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Abstract
For temperature zero we calculate the transport scattering time and the single-
particle relaxation time of the two-dimensional electron gas on the surface
of silicon (111). For the transport scattering time we take into account the
existence of a metal–insulator transition while the single-particle relaxation time
is not sensitive to a metal–insulator transition. Agreement with experimental
results on the mobility and the transport scattering time is obtained by using
a density dependent effective mass, taken from experiment. We discuss the
astonishing behavior of the single-particle relaxation time in our calculation
which is, however, in agreement with experiment. The mass divergence found
in experiment is discussed within the frame of Bloch’s quantum phase transition
from a paramagnetic phase to an ordered phase at low electron density. We
argue that the ordered phase represents a valley-polarized ground state (or an
antiferromagnetic ground state).

1. Introduction

For decades the transport properties of the two-dimensional electron gas (2DEG) have been a
very exciting research area [1]. In recent years some interesting experiments have been made in
the low-electron-density range of the 2DEG, where interaction effects are very strong and where
new ground states can be expected. The essential parameter to measure interaction effects is
the Wigner–Seitz parameter rs given by the electron density N and the effective Bohr radius a∗

B

and expressed as rs = 1/

√
π Na∗2

B . This parameter gives, for the single-valley case gv = 1, the
ratio of the mean Coulomb energy EC to the Fermi energy EF: rs = EC/EF. It follows that for
small density this parameter becomes large and, from a theoretical point of view, perturbation
theory becomes questionable.

The 2DEG in silicon-MOSFET (metal–oxide–semiconductor field-effect transistor)
structures on the (100) surface is an important testing ground due to the larger effective mass
and the larger valley degeneracy gv = 2 compared to the two-dimensional electron gas realized
in GaAs where gv = 1. Interaction effects and many-body effects increase in systems with
increasing valley degeneracy [2]. However, silicon-MOSFET structures contain more disorder
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than GaAs heterostructures. It is well known that in silicon-MOSFET structures with low peak-
mobility μpeak < 5×103 cm2 V−1 s−1 a metal–insulator transition (MIT) occurs at low electron
density [1]. The mobility data can be explained by a transport theory including an MIT [3]. At
the metal–insulator transition the mobility and, therefore, also the transport scattering time
at zero temperature vanishes. In silicon (100) MOSFET structures with high peak-mobility
μpeak ≈ 3.5 × 104 cm2 V−1 s−1 such an MIT also occurs, but at a very low electron density
NSi(100)

MIT ≈ 0.8 × 1011 cm−2 [4]. Some years ago it was found that, besides the existence
of an MIT in silicon (100), a strong mass enhancement also occurs, with a trend to diverge
at a critical density Ncm, which is near to the density of the MIT NSi(100)

cm ≈ NSi(100)
MIT [5].

This mass enhancement was first measured using a parallel magnetic field. The origin of
this mass divergence is not known and was confirmed with other experimental techniques, for
instance with the Shubnikov-de Haas (SdH) effect [6] and with measurements of the magnetic
susceptibility [7]. For a review, see [8]. Some effort has been undertaken to observe this mass
divergence in other systems, for instance in the 2DEG realized in AlAs quantum wells [9, 10]
and in GaAs heterostructures [11, 12]. However, no mass divergence was found in these
systems.

The valley degeneracy of the 2DEG on the surface of silicon (111) should be 6.
Experimentally, however, one usually finds gv = 2 [1, 13]. In a theoretical analysis [14]
on low temperature transport data of silicon (111) with a peak mobility of μpeak ≈ 2.4 ×
103 cm2 V−1 s−1 it was argued that an MIT occurs. Very recently the mobility and the
temperature dependence of SdH oscillations of the 2DEG on the surface of silicon (111) have
been studied in detail [15]. These measurements clearly confirmed the existence of an MIT at
NSi(111)

MIT ≈ 3 × 1011 cm−2. In addition, a strong mass enhancement with the possibility of a
diverging mass at NSi(111)

cm ≈ NSi(111)
MIT was found. It was argued [15] that the diverging mass is

due to interaction effects, because the mass divergence of the 2DEG in silicon (100) and silicon
(111) occurred at the same Wigner–Seitz parameter rs ≈ 9.5. In fact, NSi(100)

cm /NSi(111)
cm ≈ 0.27

corresponds to the squared mass ratio of silicon (100) with m∗ = 0.19me and silicon (111)
with m∗ = 0.36me, written as (0.19/0.36)2 = 0.28, which represents the squared ratio of the
effective Bohr radii.

The mass divergence in silicon (100) and (111) occurs always very near to an MIT.
One may ask if the MIT is connected to the mass divergence. In the argument put forward
in [15] disorder does not play any role. Independently of the question of whether disorder is
important for the mass divergence, very interesting low temperature transport properties as a
function of the electron density have been reported near NSi(111)

cm ≈ NSi(111)
MIT [15]. These data

are discussed in the first part of the paper. From experimental results obtained for different
2DEGs [4–7, 9–12, 15] in the second part of the paper we describe a possible scenario leading
to the novel mass divergence.

The paper is organized as follows. In section 2 we describe our model and the theory for
the different scattering times. Numerical results for the transport scattering time and the single-
particle relaxation time according to our theory and comparison with experiments on silicon
(111) are presented in section 3. In section 4 we discuss the origin of the mass divergence
within the concept of a quantum phase transition. We present our summary in section 5.

2. Model and theory

2.1. Model

Two scattering times determine transport experiments: the transport scattering time τt,
accessible in transport measurements, and the single-particle relaxation time τs, accessible in
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SdH measurements [1, 16, 17]. In the lowest order theory the two scattering times should
be finite and behave similarly. However, at the MIT the transport scattering time τt vanishes
in the limit of vanishing temperature. This corresponds to the definition of an MIT due to
disorder: with a finite mobility (conductivity) in the metallic phase and a vanishing mobility
(conductivity) in the insulating phase at zero temperature. In SdH measurements, used to
measure the effective mass m∗, one also has access to the single-particle relaxation time. This
scattering time is related to the Dingle temperature [1]. τs represents a measure of how disorder
modifies the density of states in the presence of disorder in the limit of a vanishing magnetic
field. If the density of states is finite at the MIT then τs is finite, too. This is because multiple
scattering effects give only small modifications to τs, if compared to the contribution of multiple
scattering effects to τt [17]. The ratio τt/τs → 0 should, therefore, vanish at the MIT.

In the following we present the results of our calculation of the transport scattering time
and the single-particle relaxation time. We compare them with recent experimental results
found for the 2DEG on silicon (111) [15]. Experimentally only a mass enhancement of about 3
was measured. But the experiment strongly suggests such a divergent mass at a finite electron
density Ncm. The lowest mobility measured in [15] at a temperature of 30 mK was smaller than
1% of the peak mobility, indicating a real MIT at the finite electron density NMIT.

For the calculation of the transport scattering time and the single-particle relaxation time
we used the lowest order theory, where 1/τ o

t and 1/τ o
s are proportional to the random potential

〈|U(q)|2〉 created by the disorder. Screening effects are described within the random-phase
approximation (RPA) [18]. Many-body effects beyond the RPA are treated by using the local-
field correction G(q) in the Hubbard approximation GH(q) [19]. Charged impurity scattering
(CIS) and interface-roughness scattering (IRS) have been taken into account. They represent
the two relevant scattering mechanisms: CIS is most important at low electron density and IRS
is important at high electron density [1]. The finite width of the electron gas is described by
form factors, which can be found in [1]. The depletion density is ND = 1 × 1011 cm−2.

2.2. Theory

The expression for the transport scattering time in the lowest order (o) of the random potential
is given by [17]

h̄

τ o
t

= 1

2πεF

∫ 2kF

0
dq

〈|U(q)|2〉
ε(q)2

q2

(4k2
F − q2)1/2

. (1)

〈|U(q)|2〉 represents the random potential due to CIS and IRS. εF is the Fermi energy and kF

the Fermi wavenumber. We use the screening function

ε(q � 2kF) = 1 + qs[1 − G(q)]Fc(q)/q, (2)

where qs = 2gv/a∗
B is the screening wavenumber. a∗

B is the effective Bohr radius a∗
B =

a0
BεLme/m∗ which depends on the background dielectric constant εL and the effective mass

m∗. a0
B = 0.53 Å is the Bohr radius in free space. Fc(q) represents the form factor for

the Coulomb interaction due to the finite width [1]. The single-particle relaxation time in the
lowest order of the random potential is given by

h̄

τ o
s

= 1

2πεF

∫ 2kF

0
dq

〈|U(q)|2〉
ε(q)2

2k2
F

(4k2
F − q2)1/2

(3)

and this equation is valid for εFτ
o
s > h̄ [17].

Within an analysis for the mass dependence for 2kF � qs one finds 1/τ o
s ∝ 1/εFq2

s ∝
m∗a∗2

B ∝ 1/m∗. Therefore we conclude that τ o
t ∝ τ o

s ∝ m∗. A divergence of the effective mass
m∗ implies a divergence of both scattering times, calculated in lowest order of the disorder.
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Figure 1. Effective mass m∗ in units of the free electron mass me as a function of electron density N
for silicon (111). The solid dots are experimental results according to [15]. The solid line represents
a fit to the experiment according to m∗/me = 0.46/(1 − Ncm/N) with Ncm = 2.2 × 1011 cm−2.

When the effective mass is enhanced, a∗
B decreases and approaches zero when the effective

mass diverges. This means that the screening properties are improved when mass enhancement
occurs.

For the transport scattering time we take into account multiple scattering effects. They
are very important near NMIT and are the origin for the MIT [20]. Therefore a modified
expression for the mobility was used: at the MIT the mobility goes to zero and the mobility for
all densities is well described by the form μ(N > NMIT) = μo(N)(1 − NMIT/N) ≡ eτ/m∗
and μ(N < NMIT) = 0 [21]. μo(N) = eτ o

t /m∗ represents the mobility calculated in the
lowest order of the random potential. Note that μ(N 
 NMIT) ≈ μo(N) while near the MIT
the mobility is expressed by μ(N ≈ NMIT) = μo(NMIT)(1 − NMIT/N). For the single-particle
relaxation time one can show that multiple scattering effects give a small effect [17] and the
lowest order results are nearly always a good approximation. This can be seen more explicitly
in figure 10 of [17].

3. Numerical results for the mobility and for scattering times

3.1. Density dependent mass and mobility

In figure 1 we show the measured [15] effective mass m∗ for electrons at the surface of (111)
and our fit to these data by

m∗/me = 0.47

1 − Ncm/N
(4)

with Ncm = 2.2 × 1011 cm−2 as the critical density of the divergent mass. me represents the
free electron mass. The overall agreement is very good and we use this analytical formula in
our expressions for the scattering times. Note, however, that even for N → ∞ the effective
mass is m∗ = 0.47me, larger than the theoretical value m∗ = 0.36me [1].

In the following we discuss two models. One where the electron mass is kept constant
m∗ = 0.36me, independent of the electron density, and the other where the electron mass is
density dependent according to equation (4). The disorder parameters for these two models, the
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Figure 2. Mobility as a function of electron density N for silicon (111). The solid dots are
experimental results of [15]. A density dependent electron mass was used in the calculation. The
solid line (μ) represents our calculation where a metal–insulator transition is taken into account.
The dotted line (μo) represents the lowest order calculation.

Table 1. Disorder parameters used for the model with ‘mass constant’, where m∗ = 0.36me, and
with ‘mass variable’, where m∗/me = 0.46/(1 − Ncm/N) and Ncm = 2.2 × 1011 cm−2.

Disorder parameters Density of MIT

Mass constant: Ni = 1.6 × 1011 cm−2 � = 3.6 Å � = 56 Å NMIT = 3.5 × 1011 cm−2

Mass variable: Ni = 1.45 × 1011 cm−2 � = 3.2 Å � = 57 Å NMIT = 3.1 × 1011 cm−2

impurity density Ni and the IRS parameters � and � are given in table 1. The electron density
NMIT of the MIT is also given in table 1.

In figure 2 we show the mobility versus density, together with experimental results [15].
The density dependent mass m∗ is used in the calculation. Impurity scattering and interface-
roughness scattering have been taken into account with an impurity density Ni = 1.45 ×
1011 cm−2 at the Si/SiO2 interface and IRS parameters � = 3.2 Å and � = 57 Å, see table 1.
The dotted line corresponds to a lowest order theory μo without an MIT. For the solid line μ an
MIT at NMIT = 3.1 ×1011 cm−2 was taken into account. We mention that NMIT > Ncm and we
conclude that the mobility vanishes at NMIT due to the MIT. Note that the mobility is directly
related to a measured quantity, the conductivity σ = Neμ. In experiment one determines
μ from σ . In our calculation we first determine the transport scattering time τ o

t and then we
calculate the mobility via μ = eτ o

t (1 − NMIT/N)/m∗. In fact, the mobility data of [15] have
been used by fitting the theoretical mobility μ to the measured one in order to determine all
parameters of disorder: Ni, �, �, and NMIT.

The mobility data found in experiment [15] can also be fitted with a constant electron mass
with equal accuracy, as in figure 2, for instance by using m∗ = 0.36me, Ni = 1.6 × 1011 cm−2,
� = 3.6 Å, � = 56 Å and NMIT = 3.5 × 1011 cm−2, see table 1. This is shown in figure 3
where a very good agreement is found between theory and experiment by taking into account
an MIT. We conclude that by fitting mobility versus density data no valuable information can
be obtained concerning a possible density dependence of the effective mass.
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Figure 3. Mobility as a function of electron density N for silicon (111). The solid dots are the
experimental results of [15]. A constant electron mass is used in the calculation. The dashed–dotted
line (μ) represents our calculation where a metal–insulator transition is taken into account. The
dotted line (μo) represents the lowest order calculation.

Figure 4. Transport scattering time as a function of electron density N for silicon (111). The solid
dots are the experimental results of [15]. The solid and dotted lines represent our calculation with
a density dependent electron mass. A metal–insulator transition is taken into account for the solid
line. The lowest order result is represent by the dotted line. The dashed–dotted line represents a
calculation with a constant electron mass, a metal–insulator transition is taken into account.

3.2. Transport scattering times and single-particle relaxation time

In figure 4 we compare the calculated transport scattering times τt and τ o
t as a function of

the electron density with experimental results [15]. For low density the experimental results
for the transport scattering time show a tendency to decrease, in agreement with our theory,
taking into account an MIT: we find τt → 0 at the MIT. The fact that we find agreement of
the calculated mobility with the measured mobility in figure 2 also implies that the transport
scattering times agree, when using the measured effective mass, which is density dependent.
However, with a constant mass we would not find agreement between theory and experiment,
see the dashed–dotted line in figure 4. We stress that the density dependent effective mass also

6



J. Phys.: Condens. Matter 19 (2007) 506214 A Gold

Figure 5. Single-particle relaxation time as a function of electron density N for silicon (111). The
solid dots are experimental results of [15]. The solid line represents our calculation for a density
dependent electron mass. The dashed–dotted line represents our calculation with a constant electron
mass.

enters the calculation of the transport scattering time and is not only the connection between
the mobility and the transport scattering time. For instance, the Fermi energy and the screening
function depend on the effective mass. Without the introduction of multiple scattering effects
and an MIT the scattering time τ o

t shows a tendency to diverge at Ncm, see the dotted line in
figure 4. This is in disagreement with experiment.

In figure 5 we show the calculated single-particle relaxation time τ o
s versus electron density

for a density dependent electron mass (solid line) and for a constant electron mass (dashed–
dotted line). For the density dependent electron mass we obtained the astonishing result that
τ o

s increases with decreasing electron density and τ o
s shows a tendency to diverge at the density

where the effective mass diverges. This is in agreement with experimental results obtained
from SdH measurements [15], see figure 5. For a constant electron mass τ o

s does not show any
sign of divergence near Ncm, see the dashed–dotted line in figure 5.

We mention that the single-particle relaxation time [15] is determined in an independent
measurement, independent from the conductivity measurement, from which τt is determined.
The fact that τ o

s strongly increases near Ncm has its physical origin in the fact that the Bohr
radius goes to zero when the mass diverges—screening becomes very efficient in this case.
This is the reason for the strong enhancement of τ o

s , the disorder becomes less important due
to stronger screening.

From our numerical analysis we conclude that the agreement between theory and
experiment for the transport properties of the 2DEG on the surface of silicon (111) is
conditioned by two facts: that (i) an MIT occurs and that (ii) the effective mass shows a strong
enhancement (divergence) at low electron density. For a constant electron mass one can explain
the density dependence of the mobility, see figure 3, but the transport scattering time and the
single-particle relaxation time from theory are no longer in agreement with the experimental
results, see figures 4 and 5.

3.3. Metal–insulator transition

After decades of discussion there exists now some agreement that an MIT occurs in two-
dimensional systems [8, 20, 22]. The origin of the mass divergence observed in silicon [5, 15]
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is completely unclear. A recent theory [23], where a mass divergence due to many-body effects
is found and where disorder is not taken into account, claims agreement with experiments
concerning the critical density. However, the predictive power of this theory has not been
worked out. The same holds for the theory of the MIT, as formulated in [22], where also
a mass divergence is expected, however, in this case, induced by disorder. We mention that
within the mode-coupling theory for the MIT due to multiple scattering [20] weak localization
effects are neglected. This theory compares favorable with some experiments. In the mode-
coupling theory the effective mass is an input parameter. In the present paper we have applied
effective mass values obtained from experiment and we found good agreement between theory
and experiment.

We have introduced the critical density of the MIT NMIT ≈ 3.1×1011 cm−2 as a parameter
determined from experiment. However, within the mode-coupling theory [20] one also can
calculate the critical density for the MIT: the critical density is determined by the parameter A,
which takes the value A = 1 at the transition point. The parameter A depends on the random
potential, the screening function and the Lindhard function.

We used the values Ni = 1.45 × 1011 cm−2, � = 3.2 Å, � = 57 Å, see table 1, and the
density dependent effective mass according to equation (4) and found N cal

MIT = 3 × 1011 cm−2.
This value is surprisingly near to the experimental value. But this very good agreement might
be accidental. For a constant mass m∗ = 0.36me we used the values Ni = 1.6 × 1011 cm−2,
� = 3.6 Å, and � = 56 Å, see table 1, to calculate the critical density and found
Ncal

MIT = 2.0 × 1011 cm−2.

3.4. Comments concerning silicon (100)

For silicon (111) we used as critical parameters 2.2 × 1011 cm−2 = Ncm < NMIT =
3.1 × 1011 cm−2, which means that NMIT = 1.4Ncm. Therefore it is clear that for the transport
scattering time and N > NMIT multiple scattering effects are very important near N ≈ NMIT

and at N = NMIT the transport scattering time becomes zero.
In silicon (100) the transport scattering time shows at low density near N > Ncm a

tendency to increase with decreasing density [24], similar to the single-particle relaxation time.
According to our theory this means that in silicon (100) the relation NMIT < Ncm should hold
and multiple scattering effects are not yet very important for N > Ncm. A more detailed
analysis of silicon (100) will be published elsewhere.

4. Discussion of the origin of the instability

4.1. Experimental results obtained with other material systems

In a recently studied high mobility GaAs heterostructure with peak mobility μpeak ≈ 1 ×
107 cm2 V−1 s−1 and an MIT at NMIT = 1.7 × 109 m−2 (this corresponds to rs = 13.7) a
mass enhancement but no mass divergence was found for rs < 13 [11]. For thin AlAs quantum
wells a sample with a peak mobility of μpeak ≈ 5 × 104 cm2 V−1 s−1 was studied in [10].
Only a mass enhancement of 2.2 at low density was found, and the 2DEG in AlAs showed
an MIT at NAlAs

MIT ≈ 0.7 × 1011 cm−2, without a mass divergence. In both systems, in GaAs
heterostructures [11, 12] and in thin AlAs quantum wells [10], only one valley is available.
This fact is our key argument to propose that the valley degeneracy gv = 2 is important for the
mass divergence observed for electrons on the surface of silicon [6, 15]. We argue that in wide
AlAs quantum wells, where gv = 2, the instability was not found in experiment [9] because of
the reduced Coulomb interaction due to the large width L > 12a∗

B of the quantum well. We
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believe that this reduced Coulomb interaction leads to Ncm � NMIT. We suggest that AlAs
quantum wells with width L ≈ 5a∗

B and gv = 2 should be used in order to search for the mass
instability. Similar arguments hold for AlP.

4.2. Bloch’s quantum phase transition

In [5] it was argued that a Stoner instability occurs at Ncm. However, later it was argued [6] that
one has a ‘spin-independent origin of the strongly enhanced effective mass’. This statement
seems to be in contradiction to a Stoner instability. It was shown in [24] that the g-factor in
silicon (100) is nearly independent of electron density and not critical at Ncm. This points to a
non-ferromagnetic ground state for N < Ncm. Therefore, we suggest that in the electron gas
on the surface of silicon (111) and (100) an instability occurs similar to the one proposed long
ago by Bloch [25]. However, we argue that the symmetry broken ground-state at low electron
density is presumably a valley-polarized state (or an antiferromagnetic state). In the original
Bloch theory the new ground state at low density is a spin-polarized state with all spins oriented
in the same direction, a ferromagnetic ground state. This is different to the ground state which
we propose.

For the valley-polarized ground state the valley degeneracy factor at Ncm changes from
gv = 2 to 1. Such a transition was discussed some time ago [26, 27, 2]. The second possibility
for the new ground state is an antiferromagnetic ground state where the spin degeneracy factor
at Ncm changes from gs = 2 to 1, however, we suppose there are antiparallel spin directions in
the two valleys.

Within a one-valley electron gas, Monte Carlo calculations show that the transition to a
ferromagnetic state occurs at rs ≈ 25 [28]. In experiment the mass divergence occurs near
rs ≈ 9.5 [6, 15]. With N ∝ 1/r 2

s we conclude that for the critical electron density there is
a factor 7.5 between Monte Carlo calculation and experiment. The valley-polarized ground
state and the spin-polarized antiferromagnetic ground state were not found in Monte Carlo
calculations because a model with only one valley was used, where such ground states are
excluded from the very beginning.

The Bloch instability [25] has its origin in the fact that interaction effects favor
a ferromagnetic (ordered) ground state, while the kinetic energy favors a paramagnetic
(disordered) ground state. Near the MIT the screening properties of the electron gas change
and for N < NMIT the screening effects of the electron gas are weakened, which means that
Coulomb effects become stronger and more long-ranged in real space. This could be the reason
why the Bloch instability happens near an MIT: the weaker screening properties of the localized
states might help the ordered phase to become stable at higher electron density.

4.3. Spin or valley occupancy fluctuations

A singular mass behavior was observed in a three-dimensional heavy fermion system at the
transition point from a paramagnetic to an antiferromagnetic ground-state [29]. For quantum
phase transitions a diverging mass is expected at a quantum critical point [30]. The Bloch
instability [25] is the first quantum phase transition discussed in the literature. This leads us
to propose that for the electron gas on the surface of silicon (100) and silicon (111) the mass
enhancement for electron densities near Ncm might be the result of the Bloch instability at Ncm

due to fluctuations of the valley (or the spin) occupancy factor. For the valley (or spin) phase
transition to occur at N ≈ Ncm electrons from one valley (spin direction) must be transferred
to the other valley (spin direction). With the diverging mass at Ncm the Fermi energy of the
electron gas vanishes. This allows the rapid redistribution of electrons from the two valleys

9
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Figure 6. Single-particle relaxation time as a function of electron density N for silicon (111) for a
density dependent electron mass. The solid line represents our calculation for a density dependent
electron mass m∗/me = 0.47/(1 − Ncm/N) with Ncm = 2.2 × 1011 cm−2 for N > Ncm and
gvgs = 4. The dashed line represents our calculation with m∗/me = 0.47/(1 − N/Ncm) for
N < Ncm and gvgs = 2.

(spin directions) into a single valley (spin direction) and vice versa. To say it differently, when
the system becomes valley-polarized (spin-polarized) at low temperatures the Fermi energy
increases by a factor two: εF → 2εF. How can one populate, at temperatures T � εF/kB, the
energy ε states with εF < ε < 2εF having only electrons with energy 0 < ε < εF available?
With m∗ → ∞ we conclude that εF → 0 and all states with 0 < ε < 2εF → 0 have the same
energy and the redistribution can occur rapidly when valley fluctuations occur. Therefore, we
suggest that the singular mass behavior near the instability point might be a general property of
the Bloch instability and has its origin in quantum fluctuation effects.

4.4. Predictions and suggested experiments for N < Ncm

We expect that at low temperatures the effective mass is independent of temperature. The reason
is that within the Bloch scenario above and below Ncm one has Fermi liquids with well-defined
Fermi temperatures. This seems to be the case in experiment when N > Ncm [15]. However,
this will only be the case if temperatures are small compared to the effective Fermi temperature,
defined with the density dependent effective mass. The effective Fermi temperature becomes
very small near Ncm, where the effective mass becomes very large. We think that the prediction
that gsgv = 2 for N < Ncm can be tested in experiment: the Fermi energy should be a factor 2
larger than expected if the degeneracy factor were still gsgv = 4, as for N > Ncm. With SdH
measurements one could get information about the degeneracy factor for N < Ncm.

We also propose to study samples where NMIT < Ncm, for instance silicon (100) MOSFET
structures, in the density range NMIT < N < Ncm, where such samples should be metallic. By
applying a parallel magnetic field one can spin-polarize the 2DEG and such experiments allow
us to obtain information about the Fermi energy using magnetoresistance measurements [31].

It was suggested long ago that one should measure SdH oscillations in the insulating phase,
where N < NMIT, see figure 10 of [17]. In figure 6 we show the calculated single-particle
relaxation time τ o

s above and below Ncm, assuming a density dependent mass with a singularity

10
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at the transition point. For N > Ncm we use the effective mass as given in equation (4). For
N < Ncm we assume a diverging mass according to m∗/me = 0.47/(1 − N/Ncm) and we
find that the single-particle relaxation time is not fully symmetric to N = Ncm. This is due to
the weaker screening when the degeneracy is gsgv = 2. Figure 6 shows that the suggestion
of the Bloch instability at N = Ncm leads to a prediction for N < Ncm: a strongly increasing
single-particle relaxation time is expected for N approaching Ncm from below.

5. Summary

We considered transport properties in a two-dimensional electron gas on the surface of silicon
(111) with a divergent effective mass at Ncm and with a metal–insulator transition at NMIT =
1.4Ncm. We find that near NMIT the transport scattering time strongly decreases (τt → 0),
while near Ncm the single-particle relaxation time strongly increases (τ o

s → ∞). This behavior
is in agreement with recent experiments [15]. The surprising behavior of τ o

s near Ncm is the
result of the mass divergence at Ncm: the screening effects increase with increasing effective
mass.

As the origin for the mass divergence at the critical density Ncm we suggest a
Bloch instability from a non-polarized paramagnetic ground state to a valley-polarized
paramagnetic (or a spin-polarized antiferromagnetic) ground state with valley (or spin)
occupancy fluctuations near Ncm. A Fermi liquid is expected for N < Ncm.
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